منابع مشابه
A Key Role for TRPM7 Channels in Anoxic Neuronal Death
Excitotoxicity in brain ischemia triggers neuronal death and neurological disability, and yet these are not prevented by antiexcitotoxic therapy (AET) in humans. Here, we show that in neurons subjected to prolonged oxygen glucose deprivation (OGD), AET unmasks a dominant death mechanism perpetuated by a Ca2+-permeable nonselective cation conductance (IOGD). IOGD was activated by reactive oxygen...
متن کاملThe Enemy at the Gates Ca2+ Entry through TRPM7 Channels and Anoxic Neuronal Death
In brain ischemia, gating of postsynaptic glutamate receptors is thought to initiate Ca2+ overload leading to excitotoxic neuronal death. In this issue, Aarts and colleagues describe a novel mechanism, whereby gating of TRPM7, a Ca2+-permeable nonselective cation channel, mediates Ca2+ overload and demise of anoxic neurons.
متن کاملNeuronal injury and death following focal mild brain injury: The role of network excitability and seizure
Objective(s): While traumatic brain injury (TBI) is a predisposing factor for development of post-traumatic epilepsy (PTE), the occurrence of seizures following brain trauma can infuriate adverse consequences of brain injury. However, the effect of seizures in epileptogenesis after mild TBI cannot yet be accurately confirmed. This study was designed to investigate the ...
متن کاملBuilding the Neuronal Microtubule Cytoskeleton
Microtubules are one of the major cytoskeletal components of neurons, essential for many fundamental cellular and developmental processes, such as neuronal migration, polarity, and differentiation. Microtubules have been regarded as critical structures for stable neuronal morphology because they serve as tracks for long-distance transport, provide dynamic and mechanical functions, and control l...
متن کاملP3: Neuronal Death Following Posttraumatic Excitability and Seizure
لطفاً به چکیده انگلیسی مراجعه شود.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Channels
سال: 2013
ISSN: 1933-6950,1933-6969
DOI: 10.4161/chan.22824